
1

DEDUCTIVE VERSUS INDUCTIVE EQUILIBRIUM SELECTION:
EXPERIMENTAL RESULTS

by

Ernan Haruvy
Harvard Business School

and
Dale Stahl

University of Texas

January, 2001

Abstract

The debate in equilibrium selection appears to have culminated in the formation of two

schools of thought: those that favor equilibrium selection based on rational coordination and

those that favor zero-rationality adaptation.  We examine four deductive selection principles and

find that each fails to explain experimental data.  We propose an inductive selection principle

based on simple learning dynamics.  Using out-of-sample maximum likelihood parameters, the

predictive performance of one such dynamic is shown to be dramatically better than the

deductive selection principles.  However, this selection principle is not always definitive, since

no dynamic is guaranteed to converge.
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1. Introduction

Equilibrium selection has been in the forefront of game theory in recent years, with the

need for a salient selection method increasing as new economic and social problems involving

multiple equilibria are being modeled.  There are two main schools of thought in the area of

equilibrium selection: On the one hand we have deductive selection-- selection based on

reasoning and coordination on focal points-- and on the other hand we have inductive selection—

selection based on adaptive dynamics.  The debate between these two camps appears to have

reached an impasse.  Whereas existing deductive selection rules have been shown to do poorly in

experiments (Van Huyck, Battalio, and Beil, 1990, 1991; Straub, 1995), inductive selection

principles appear more promising.

The deductive equilibrium selection literature attempts to explain and predict which of

the equilibria surviving refinements should be expected in different classes of games.  A

common conjecture is that decision makers apply some deductive principle to identify a specific

Nash equilibrium.  One such deductive selection principle is payoff-dominance (Harsanyi and

Selten, 1988, p. 81; Schelling, 1960, p. 291).  Applying this principle, one expects the

equilibrium outcome in a coordination game to be the highest Pareto-ranked equilibrium.  The

major limitation of payoff dominance lies in its failure to take into consideration off-equilibrium

payoffs.  To remedy this deficiency, equilibrium selection principles have been developed that

are based on “riskiness,” the most famous of which is Harsanyi and Selten’s (1988) risk-

dominance selection principle.

Schelling (1960) was the first to note that the salience of a selection principle used in a

particular game is largely an empirical question.  His support of experimental methods came

from his conviction that  “some essential part of the study of mixed motive games is empirical.”

Further, “the principles relevant to successful play, the strategic principles, the propositions of a

normative theory, cannot be derived by purely theoretical means from a priori considerations”

(Schelling, 1960, p. 162).

Experimental results [for prominent examples see Cooper, DeJong, Forsythe, and Ross

(1990), Van Huyck, Battalio and Beil (1990, 1991; henceforth, VHBB), Van Huyck, Cook, and

Battalio (1994, 1997; henceforth, VHCB), and Straub, 1995] do not appear to favor deductive

principles.  A possible explanation for the apparent failure of deductive principles is that they

assume decision-makers possess beliefs consistent with some equilibrium without attempting to
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explain the process by which decision-makers acquire these equilibrium beliefs.  Other

experimental works [Stahl and Wilson (1994, 1995; henceforth, SW), Stahl (1996), Haruvy,

Stahl and Wilson (2000; henceforth, HSW), and Haruvy (1997)] reject the hypothesis that all

experimental subjects generally begin with equilibrium beliefs.  Hence, it would seem that an

equilibrium outcome is generally not the result of choices made by decision-makers with

equilibrium beliefs but rather the result of a dynamic process that begins with first period play by

less-than-super-rational decision-makers.

Until recently deductive selection principles, which do not allow a role for the history of

play or learning, have dominated the equilibrium selection literature.  The failure of deductive

principles has shifted interest to learning and evolutionary dynamics as possible tools for

equilibrium prediction.  The basis for these inductive selection principles is the idea that in cases

where decision-makers initially fail to coordinate on some equilibrium, repeated interaction may

allow them to learn to coordinate.  Having some experience in the game provides a decision-

maker with observations that can be used to reason about the equilibrium selection problem in

the continuation game.  This experience may influence the outcome of the continuation game by

focusing expectations on a specific equilibrium point.

Some experimental studies of games with multiple equilibria have found that relatively

simple adaptive learning dynamics often yield good equilibrium predictions.  In these

experiments, knowledge of the initial distribution of play is sufficient to predict the equilibrium

outcome (see VHBB, VHCB, and Roth and Erev, 1995).  However, even with a good

characterization of dynamics, one must specify the initial distribution of play before predicting

the final outcome.  Recent research (Haruvy and Stahl, 2000) has attempted to fill this gap by

studying alternative theories (a priori specifications) of initial conditions.  They find that

specifying uniform initial conditions for "period 0" (i.e. a fictitious  period prior to the actual first

period of play) and using the dynamic model to predict play for period 1 onward is a robust and

parsimonious specification that fits the dynamics quite well.

Stahl (1999b) conducted a horse race among seven action-reinforcement learning models

and found that a simple four-parameter Logit Best-Reply with Inertia and Adaptive Expectations

(LBRIAE) dynamic outperformed all others both in sample and out-of-sample by several

measures.  We therefore focus on the LBRIAE dynamic model in this paper as a candidate for an

inductive equilibrium selection principle;  i.e., if the LBRIAE dynamic converges, then we call

the limit point the LBRIAE equilibrium.
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The Harsanyi and Selten (1988) tracing procedure has both deductive and inductive

features.  Their algorithm adjusts arbitrary prior beliefs into equilibrium beliefs through gradual

movement in the direction of best response to the prior beliefs.  It is important to recognize,

however, that their underlying dynamic process occurs in the mind of the player before the first

period of play, and so is independent of empirical histories in a given game.  Further, unlike

LBRIAE dynamics, dominated strategies have no effect on their predictions - an implication that

has been strongly refuted by experimental data (e.g. Cooper, et. al., 1990).  Nonetheless, we

adopt the spirit of their approach, in suggesting simple initial conditions and moving in a

dynamic manner, to arrive at an ex-ante prediction based on game properties alone.

We describe four deductive selection principles in section 2 and our inductive approach

in section 3.  Section 4 describes some simple games that test existing notions of deductive

selection against our proposed alternative and the experimental procedure.  Section 5 describes

the results, and Section 6 concludes.

2.  Deductive Equilibrium Selection Principles.

In this section we briefly review the main deductive selection principles in the literature:

payoff dominance, security and risk dominance.  The premise behind the deductive selection

principles is that players choose an action from the set of Nash equilibrium actions according to

various criteria.  If all players apply the same criterion, the equilibrium outcome can be predicted

without any consideration of dynamics.

2.1  Payoff Dominance.

The payoff dominance (PD) principle relies on the idea that “rational individuals will

cooperate in pursuing their common interests if the conditions permit them to do so” (Harsanyi

and Selten, 1988, p.356).  In the symmetric normal-form games we study, the payoff dominant

equilibrium corresponds to the Nash equilibrium action with the largest diagonal payoff.

Experimental studies by Cooper et al. (1990, 1992), VHBB (1990, 1991) and Straub (1995) on

coordination games provide substantial evidence that players often fail to coordinate their actions

to obtain a Pareto-optimal equilibrium in experimental settings.
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2.2.  Security

A secure action is that action which maximizes the minimum possible payoff (Van

Huyck et. al., 1990).  Thus, when each act is appraised by looking at the worst state for that act,

the secure action is the action with the best worst state.  This idea is the pure-strategy version of

Von Neumann and Morgenstern’s (1947) maximin criterion.  It is important to note that in games

with non-Nash actions, there is no reason to assume that the secure action should be in the

support of some Nash equilibrium.  Therefore, to make the security criterion an equilibrium

selection principle it must be modified to exclude actions that are not in the support of some

equilibrium.  We restrict the security criterion to equilibrium actions is by defining the secure

equilibrium action as that equilibrium action which satisfies

kj
NEj    NEk     

 Uminmax  arg
∈∈

.        (1)

where U is a J×J matrix of game payoffs for the row player in a given game and NE denotes the

set of Nash equilibrium actions.  This specification applies the security criterion to the game after

the deletion of non-equilibrium actions.  In accordance with this restriction, the security (SEC)

selection principle is an equilibrium selection principle that predicts the maximin action after

restricting attention to the set of equilibrium actions.

2.3.  Risk Dominance

The Harsanyi and Selten (1988) risk-dominance selection criterion is concerned with

pair-wise comparisons of Nash equilibria.  The equilibrium with the highest Nash-product is

selected out of each pair, where the term Nash-product refers to the product of the deviation

losses of both players at a particular equilibrium.  Unfortunately, there are difficulties when

attempting to apply this definition to general n×n games with more than two equilibria because

the pairwise risk-dominance relation is not necessarily transitive.

One solution is to redefine risk dominance in accordance with Harsanyi and Selten's

heuristic justification, in which selection of an equilibrium results from postulating an initial

state of uncertainty where the players have uniformly distributed second order beliefs; i.e., each

player believes that the other players’ beliefs are uniformly distributed on the relevant space of
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priors.  Briefly, given a symmetric n×n game with payoff matrix U, let NE denote the set of Nash

equilibrium actions, and let ∆NE denote the simplex on NE.  For each j ∈  NE, define qj
RD

 as the

relative proportion of ∆NE for which action j is the best response to some belief in ∆NE.  Then the

action k ∈  NE that maximizes Ukq
RD (where Uk is the kth row of the payoff matrix) is the risk-

dominant NE action.  This solution coincides with the pairwise definition in 2×2 games and

ensures transitivity of the risk-dominance relation in symmetric n×n games.  We shall refer to

this extension simply as risk-dominance (RD).

In the games we study, the Harsanyi-Selten pairwise definition of risk dominance yields a

unique solution, which we denote as pairwise risk-dominance (PRD).  Harsanyi and Selten also

introduce a tracing procedure as a risk dominance approach for more general games. In our

games, the Harsanyi-Selten tracing procedure would pick the PRD equilibrium. It is important to

note that the selection principle promoted by Harsanyi and Selten would in fact select the unique

PD equilibrium over any of the risk dominance concepts. We nonetheless isolate the risk

dominance notion as a principle worth investigating for its own merits.

3.  Inductive Selection Principles.

By inductive selection principles we refer to dynamic models and their limit points.  We

begin by addressing several methodological issues concerning the predictions a dynamic model.

We then present the LBRIAE model as an example and our preferred inductive principle.

3.1.  Inductive Processes as Selection Principles.

Though several models of dynamics have been proposed in the literature in the context of

coordination in games with multiple equilibria, few authors have focused on dynamic models as

a solution to the equilibrium selection problem.  One exception is Van Huyck et al. (1997) who

studied adaptive behavior in a generic game with multiple Pareto ranked equilibria.  They found

that behavior diverged at the separatrix predicted by the fictitious play dynamic and the

equilibrium selected was sensitive to small differences in initial conditions.  However, they made

no characterization of the appropriate initial conditions.  Obviously, such sensitivity is an

impediment to using inductive processes to define selection principles.
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Unlike the standard dynamic literature reliance on one-period-ahead measures of

likelihood, the focus in the application of dynamics to equilibrium selection is on T-period-ahead

prediction, or the ex-ante prediction prior to the start of the game of the period T frequency of

choice.  To compute the exact theoretical probability distribution for such a T-period-ahead

prediction, we would need to integrate out the T-1 periods prior to T.  Although such a feat may

be impossible analytically, it can be approximated to any desired degree of accuracy by

simulating a large number of paths of play.

Given a finite population and a positive probability (ε) of trembles, every T-period path

has a strictly positive probability.  Therefore, our integration procedure will put positive

probability on every stable Nash equilibrium.  This indeterminacy is clearly a drawback to an

inductive selection principle.  One way to generate more definitive predictions is to simulate

paths of play for a large population (thereby reducing the multinomial variance), and to reduce

the probability of trembles, taking the limit as the population size increases indefinitely and ε

goes to zero.  The limit dynamics are those of a deterministic first-order difference equation on

the simplex.  Starting with initial conditions for the choice frequencies p(0), if the limit dynamics

converge, then the limit point is the inductive selection principle's prediction.

There are two caveats of this limit approach.  First, the limit predictions are not

necessarily reliable for finite populations and positive trembles.  For small populations with non-

negligible trembles, historical accidents, by bumping the path out of one basin of convergence

into another, could have a permanent effect on the long-run outcome.  Hence, when attempting

predictions for small populations, it would be safer to use simulations for the actual population

size and tremble likelihood.

Second, the predictions may be highly sensitive to the initial conditions p(0).  To see this,

consider a game for which p(0) is very close to a separatrix.  Slightly perturbing the initial

conditions so they lie on the other side of the separatrix will result in dramatically different final

outcomes for the limit dynamics.  Thus, unless one is extremely confident in the specification of

initial conditions, one should be concerned about the robustness of the limit results to initial

conditions.  While using simulations for the actual population size and empirically measured

tremble probability will mitigate this problem somewhat, a better approach would be direct

sensitivity analysis: e.g., draw initial priors from a multinomial distribution as if period 0 were

real.
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3.2.  The LBRIAE Inductive Selection Principle.

Stahl (1999b) proposed the Logit Best-Reply with Inertia and Adaptive Expectations

(LBRIAE) model.  The population is assumed to be comprised of two types.  One type either

sticks with last period's choice, or imitates the most recent empirical frequency of the whole

population, p(t-1).  Given a fixed propensity to stick or imitate, the resulting behavior of this type

is a first-order dynamic process, which has the same structural form as an adaptive expectations

process for beliefs.  The second type is assumed (i) to have beliefs given by the adaptive process

of the first type (as if they believe everyone else is of the first type), and (ii) to choose a noisy

(logistic) best-reply to this belief.  To accommodate trembles by all types, the probability choice

function is mixed with the uniform distribution over the actions.  Furthermore, unlike the

standard assumption of uniform initial conditions for period 1, LBRIAE imposes the uniformity

assumption on a ficititious period 0, and uses the dynamic model to predict first period behavior

Defining the LBRIAE prediction as the limit of the large population dynamics as the

tremble probability goes to zero, the prediction is a logit-response equilibrium of the game

(McKelvey and Palfrey, 1995), which will depend on the predetermined values of the LBRIAE

parameters.  We hasten to point out that there is no guarantee that the limit dynamics will

converge.

We agree with VHCB that simple "better-response" dynamics should be expected to

predict well for many games with multiple equilibria, and we deem the four-parameter LBRIAE

model to belong to this class.  Moreover, it appears that the tremble structure and the herd

behavior of this model result in a much better fit of experiment data than other leading models

(Stahl, 1999b).  While the final equilibrium outcome for most of our games is predicted equally

well by all leading dynamic models, we will see in section 5 that LBRIAE dramatically

outperforms Anderson, Goeree and Holt (1997), Roth-Erev (1995), and Camerer-Ho (1999) for

one of the games. Hence, we focus on the inductive selection principle derived from the

LBRIAE model.

4. The Games and Experimental Procedure.

We selected five games that discriminate among the deductive equilibrium selection

principles of Payoff Dominance (PD), Risk Dominance (RD), Pairwise-Risk Dominance (PRD),
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and Security (SEC).  For the LBRIAE selection principle, we use parameters estimated in Stahl

(1999b) for a totally different data set, and produce 10,000 simulations for a large population and

vanishing trembles.1  The five games are (using HS99 numbering): 1, 4, 13, 14 and 19, shown in

Figure 1.  These five games all have the property that each of the selection principles makes a

unique prediction as indicated in Figure 1.2  The aggregated choices are displayed as underlined

numbers above each payoff matrix in Figure 1.

A “mean-matching” protocol was used.  In each period, a participant’s token payoff was

determined by her choice and the percentage distribution of the choices of all other participants,

p(t), as follows.  The row of the payoff matrix corresponding to the participant’s choice was

multiplied by the vector of choice distribution of the other participants.  Token payoffs were in

probability units for a fixed prize of $2.00 per period of play.  In other words, the token payoff

for each period gave the percentage chance of winning $2 for that period.  The lotteries that

determined final monetary payoffs were conducted following the completion of both runs using

dice.  Specifically, a random number uniformly distributed on [00.0, 99.9] was generated by the

throw of three ten-sided dice.  A player won $2.00 if and only if his token payoff exceeded his

generated dice number.  Payment was made in cash immediately following each session.

Participants were seated at private computer terminals separated so that no participant

could observe the choices of other participants.  The relevant game, or decision matrix, was

presented on the computer screen.  Each participant could make a choice by clicking the mouse

button on any row of the matrix, which then became highlighted.  In addition, each participant

could make hypotheses about the choices of the other players.  An on-screen calculator would

then calculate and display the hypothetical payoffs to each available action given each

hypothesis.  Participants were allowed to make as many hypothetical calculations and choice

revisions as time permitted.  Following each time period, each participant was shown the

aggregate choices of all other participants and could view a record screen with the history of the

aggregate choices of other participants for the entire run.

                                                          
1 Since the equal-probable point is not close to any separatrix for these games, the limit predictions are robust to the
initial conditions.

2  While the limit point of the LBRIAE model is a logit equilibrium, since the estimated precision of the logit best-
replies is high enough to put the limit point very close to a pure-strategy Nash equilibrium, for the purpose of
comparisons with the deductive selection principles, we identify the LBRIAE prediction as that closest pure-strategy
Nash equilibrium.
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5.  Results

We first examine the aggregate final-period choices, and compute the proportion of those

choices (aggregated over all experimental sessions of a game) that are consistent with

equilibrium selection principle P, where P ∈  {PD, RD, PRD, SEC, LBRIAE}.  Because we have

a different number of experimental sessions for the various games, we first average results for

each game over the sessions of that game, and finally take the simple average of these averages.

Table 1.  Proportion of Final-Period Choices Consistent with Equilibrium Selection
Principle:

PD RD PRD SEC LBRIAE
Game 1 0.048 0.952 0 0.952 0.952
Game 4 0.008 0.975 0.975 0.017 0.975
Game 13 0.063 0.063 0.063 0.811 0.811
Game 14 0.260 0.260 0.260 0.715 0.715
Game 19 0.040 0.871 0.089 0.871 0.871
Average 0.084 0.624 0.277 0.673 0.865

We observe that PD performs worse by this criterion, since only 8.4% of the aggregate final-

period choices are consistent with the PD principle.  The LBRIAE principle clearly performs

best by this criterion, since at least 70% of the aggregate final-period choices are consistent with

the LBRIAE principle.  While RD and SEC perform well above the 50% level, there are games

for which these principles perform dismally (13 and 4 respectively).  To see the robustness of

these results across the games, note that the LBRIAE column weakly dominates the other four

columns, and that the RD column weakly dominates PR and PRD; thus, these rankings are

invariant to any distribution across these games.

An alternative criterion for evaluating selection principles is by "outcomes" determined

on a session-by-session basis. We say that the final outcome is x in session i of a game when at

least 75% of the final-period choices are x; here x stands for the action corresponding to a

particular equilibrium selection principle for that game.  We then compute the proportion of the

experimental sessions for which x was the final outcome.
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Table 2.  Proportion of Final Outcomes Consistent with Equilibrium Selection Principle:

PD RD PRD SEC LBRIAE
Game 1 0 1 0 1 1
Game 4 0 1 1 0 1
Game 13 0 0 0 0.857 0.857
Game 14 0.2 0.2 0.2 0.8 0.8
Game 19 0 1 0 1 1
Average 0.04 0.64 0.24 0.731 0.931

Once again we see that PD performs worst (4%) and LBRIAE best (93%).  All the

selection principles except LBRIAE completely miss the final outcome for at least one game in

our data, while the lowest performance of LBRIAE is 80%.  The performance of SEC and

LBRIAE differ for only game 4, where action C is the unique SEC action, but B is the final

outcome for all sessions run, and B is the RD and LBRIAE solution.  RD however predicts none

of the game 13 outcomes and only 20% of game 14 outcomes.  Again, the LBRIAE column

weakly dominates the other four columns, and RD weakly dominates PD and PRD, so these

rankings are invariant to the distribution over games.

We see that both performance criteria rank the principles the same.  LBRIAE is the clear

winner.  It missed only two outcomes: one for game 13, which all selection principles missed

because the path did not converge, and one for game 14 that crossed the separatrix.

While most of the alternative learning models would make the same predictions as

LBRIAE, game 19 presents a discriminating test.  All five sessions of game 19 converged to the

B outcome, which is predicted by the LBRIAE model.  However, using Stahl’s (1999b) ML

parameter estimates, Anderson, Goeree and Holt (1997) logit form of replicator dynamics

predicts 70% A’s, Roth-Erev (1995) reinforcement learning predicts 52% A’s, and Camerer-Ho

(1999) EWA predicts 14% A’s.

6.  Conclusions

Our results confirm studies like VHBB and Straub (1995) in indicating that none of the

mainstream deductive principles give reliable predictions.  Though consistent with the spirit of

the tracing procedure of Harsanyi and Selten (1988), LBRIAE does not ignore dominated

actions, hence LBRIAE produces very different suggestions from the tracing procedure.
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However, we hasten to point out that the LBRIAE process may not converge for some games.

On the other hand, it is not clear that human play will converge in games where the LBRIAE

process does not converge, and since the LBRIAE model fits the empirical dynamics quite well,

the stochastic prediction implicit in the model may be about as good as we can hope for.3

When predicting final outcomes, we have assumed that there is no previous experience

with a particular game (or saliently similar game) among the experiment participants.  Therefore,

the LBRIAE model invokes the principle of insufficient reason to specify a uniform prior for a

fictitious period before the first period of the experiment.  Furthermore, if past experience came

from the same informational/institutional environment as the current experiment, then the farther

into the past we go, the more reasonable is the assumption of a uniform prior sometime in the

past, and hence the more reasonable is the LBRIAE prediction using a uniform prior.

On the other hand, finite-population stochastic dynamics can result in substantially

different short-run outcomes (e.g. our Game 14).  If the same population were to continue to play

this game, the principle of insufficient reason would no longer apply, but instead it would be

natural to specify the initial conditions as a function of the common experience (perhaps the

historical empirical frequency distribution mixed with the uniform distribution).  If the history-

dependent initial conditions were to fall in a different basin of attraction, then the LBRIAE

prediction would differ accordingly.  Thus, the LBRIAE model can be easily adapted to

accommodate relevant common experience.

In typical university-based experiments with thoroughly mixed (as opposed to isolated)

subject populations and with abstract games that are not obviously similar to naturally occurring

games for which there is substantial common experience, the LBRIAE model with a uniform

prior (and perhaps some diversity) is likely to predict very well.  However, in cross-cultural

studies (e.g., Roth et al., 1991), in carefully designed experiments with experienced subjects, and

in experiments with “natural” context-rich games, the predictive performance of the LBRIAE

model may be improved by incorporating the relevant common experience into the specification

of initial conditions.

                                                          

3 The focus here is on simple dynamics. We believe that more sophisticated dynamics, such as the Rule Learning
model of Stahl (2000), can do better.
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Figure 1.  The Game Matrices, Number of Sessions and Aggregate Choices.

Game 1  (5 ses)            Game 4  (5 ses)
      118         0         6          1      118        2

70 60 90 L1, SEC, RD,
LBRIAE 70 30 20      PD

60 80 50 PRD
60 60 30

L1, RD,
LBRIAE

40 20 100 PD
45 45 40 SEC

Game 13  (7 ses)           Game 14  (5 ses)
        22        11      142          3       88       32

60 60 30 L1
50 0 0 DOM

30 70 20 PD, RD
70 35 35 L1, SEC,

LBRIAE

70 25 35
SEC,

LBRIAE
0 25 55 PD, RD

Game 19  (5 ses)
       11       108        5

80 60 50 PRD

60 70 90
L1, SEC, RD,

LBRIAE

0 0 100 PD

Key: PD = Payoff dominant Nash equilibrium strategy
RD = Risk dominant Nash equilibrium strategy
PRD = Pair-wise risk dominant strategy (only indicated when distinct from RD)
SEC = Security Nash equilibrium strategy
L1 = Level-1 Strategy
LBRIAE = large-population limit distribution with no trembles
Underlined numbers are the aggregate choices.
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Appendix for Referees Only

The Formal LBRIAE Model

Let q(t,θ) denote the expected probability of play in period t based on the history of play

up to and including period t-1, and let p(t-1) denote the actual frequency of play in period t-1.

Then, the one-parameter adaptive expectation model specifies that

q(t,θ)  =  θq(t-1,θ) + (1-θ)p(t-1) , (2)

where, in accordance with the principle of insufficient reason, q(0,θ) and p(0) are specified as the

uniform distribution over the actions.4

It is assumed that a proportion δ of the population behaves according to eq(2), which can

be interpreted as “herd” behavior in which with probability θ the past action will be repeated and

with probability 1-θ the recent past will be mimicked.  The proportion 1-δ of the population

chooses a logit best-reply to eq(2).  That is, letting b(q,ν) denote the logit best-reply to q with

precision ν, then the probability choice function for period t conditional of history ht is given by

ϕ(t|ht)  =  δ q(t,θ)  +  (1-δ) b(q(t,θ), ν) . (3)

To accommodate trembles this probability choice function is mixed with the uniform distribution

over the actions (denoted p0):

ϕ*(t|ht)  =  (1-ε)ϕ(t|ht)  +  εp0. (4)

Thus, this LBRIAE model has four parameters:  ν, δ, θ, and ε.  The Stahl (1999b) maximum-

likelihood parameter estimates are  (0.3955, 0.3258, 0.2507, 0.0530) respectively.

Then, the probability of observing empirical frequency p(t) in period t in a population of

size n is a multinomial distribution, call it Φn(p(t)|ht), with ϕ*(t|ht) as the underlying

probabilities.

                                                          
4 If there were some prior history for the game, then there might be a reason for a non-uniform prior.
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To generate a T-period-ahead prediction of the outcome for the Tth period, we need to

integrate out the T-1 periods prior to T:

Φn(p(T))  =  1)dp(Tp(0))dp(1)|(1p(1))1),...,p(T|(T nn −⋅⋅⋅Φ∫ ∫ ×⋅⋅⋅×−Φ⋅⋅⋅ . (4)

Note that while the domain for ϕ* is the discrete set of the J actions in the game, the
domain for Φn is the J-dimensional simplex.


